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ABSTRACT

The Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking

Evaluation Project (PLUMBER) illustrated the value of prescribing a priori performance targets in model

intercomparisons. It showed that the performance of turbulent energy flux predictions from different land

surface models, at a broad range of flux tower sites using common evaluation metrics, was on average

worse than relatively simple empirical models. For sensible heat fluxes, all land surface models were

outperformed by a linear regression against downward shortwave radiation. For latent heat flux, all land

surface models were outperformed by a regression against downward shortwave radiation, surface air

temperature, and relative humidity. These results are explored here in greater detail and possible causes

are investigated. It is examined whether particular metrics or sites unduly influence the collated results,

whether results change according to time-scale aggregation, and whether a lack of energy conservation in

flux tower data gives the empirical models an unfair advantage in the intercomparison. It is demonstrated

that energy conservation in the observational data is not responsible for these results. It is also shown that

the partitioning between sensible and latent heat fluxes in LSMs, rather than the calculation of available

energy, is the cause of the original findings. Finally, evidence is presented that suggests that the nature of

this partitioning problem is likely shared among all contributing LSMs. While a single candidate expla-

nation for why land surface models perform poorly relative to empirical benchmarks in PLUMBER could

not be found, multiple possible explanations are excluded and guidance is provided on where future re-

search should focus.
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1. Introduction

The assessment and intercomparison of land surface

models (LSMs) has evolved from simple, site-based

synthetic experiments in the absence of constraining

observational data (Henderson-Sellers et al. 1996;

Pitman et al. 1999) to targeted comparisons of process

representation (e.g., Koster et al. 2006; Guo et al. 2006)

and global-scale experiments (Dirmeyer et al. 1999;

Koster et al. 2004; Seneviratne et al. 2013). This history

is detailed in Pitman (2003), van den Hurk et al. (2011),

Dirmeyer (2011), and Best et al. (2015). Recently, Best

et al. (2015) noted that throughout this history, model

performance has been assessed by direct comparisonwith

observational products or other LSMs. They argued that

without a mechanism to define appropriate levels of

performance in a givenmetric, simple comparisons of this

nature are not sufficient to gauge whether models are

performing well or not.

The Protocol for the Analysis of Land Surface

Models (PALS) Land Surface Model Benchmarking

Evaluation Project (PLUMBER; Best et al. 2015) was

constructed to undertake a multimodel examination of

LSMs and to focus on defining benchmarks for model

performance, rather than simply comparing LSMs and

observations. PLUMBER examined the performance

of 13 LSMs consisting of variants from eight distinct

models at 20 flux tower sites covering a wide variety of

biomes (see Fig. 1 and Tables 1, 2). Part of the assess-

ment of performance used four common metrics (Table

3), focused on bias, correlation, standard deviation, and

normalized mean error. Note that the first three metrics

provide independent information about model perfor-

mance, while normalizedmean error contains information

about all three previousmetrics and is commonly used as a

summary metric.

The first group of benchmarks in the PLUMBER ex-

periment were two earlier-generation, physically based

models: the Manabe bucket model (Manabe 1969), a

simple soil moisture reservoir model with added surface

exchange turbulence, and the Penman–Monteith equa-

tion (Monteith and Unsworth 1990), which calculates

evapotranspiration based on net irradiance, air temper-

ature, humidity, and wind speed. As anticipated (e.g.,

Chen et al. 1997), modern LSMs outperform these sim-

pler physically based models (Best et al. 2015).

The second group of benchmarks investigated in

PLUMBER was those used in PALS (Abramowitz

2012), a web-based database of model simulation and

observational land surface datasets, with integrated

diagnostic analysis tools. This benchmark group con-

sisted of three empirical models: 1lin, a simple linear

regression against downward shortwave radiation; 2lin,

a two-dimensional linear regression against downward

shortwave radiation and air temperature; and 3km27, a

three-dimensional, k-means clustered piecewise-linear

regression against downward shortwave radiation,

temperature, and relative humidity. All three empirical

models were trained and tested with half-hourly flux

tower data. Each empirical model was applied out-of-

sample separately at each FLUXNET site by calibrat-

ing on data from the 19 other sites to establish

FIG. 1. The locations of the 20 flux tower sites in the PLUMBER experiment. The IGBP vegetation type is represented by color and the

numbers indicate the years of data used in the PLUMBER experiment. Site data are given in Table 1.
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regression parameters and then using the meteorolog-

ical data from the testing site to predict flux variables

using these parameters.

The two groups of benchmarks were used to quantify

expectations of LSM performance. That is, they provide

some understanding of how close to observations we

should expect an LSM to be, based on the complexity of

the processes at each site and how much information is

available in meteorological variables about latent and

sensible heat fluxes.

In the PLUMBER experiments, LSMs used the ap-

propriate vegetation type, vegetation height, and reference

height, but otherwise used their default parameter

values for the specified vegetation type and selected

soil parameter values using their own internal datasets.

The LSMs were equilibrated by using the first year of

each FLUXNET site repeatedly as a spinup phase.

More detail about the PLUMBER experimental pro-

tocol can be found in Best et al. (2015).

The results of this comparison are reproduced here

for reference in Fig. 2. The columns represent the

different LSMs. Within each column, latent and sen-

sible heat fluxes are shown. The vertical axis repre-

sents the rank of each LSM for one of these flux

TABLE 1. FLUXNET datasets used in PLUMBER.

FLUXNET code Location Lat Lon IGBP land-cover type Time frame Years

Amplero IT-Amp Italy 41.90418N 13.60528E Croplands 2002–08 4

Blodgett US-Blo California, United States 38.89538N 120.6338W Evergreen needleleaf 1997–2007 7

Bugac HU-Bug Hungary 46.69178N 19.60178E Croplands 2002–08 4

ElSaler2 ES-ES2 Spain 39.27568N 0.31538W Croplands 2004–10 2

ElSaler ES-ES1 Spain 39.3468N 0.31888W Permanent wetlands 1999–2006 8

Espirra PT-Esp Portugal 38.63948N 8.60188W Woody savannas 2002–09 4

FortPeck US-FPe Montana, United States 48.30778N 105.1028W Grasslands 1999–2013 7

Harvard US-Ha1 Massachusetts, United States 42.53788N 72.17158W Mixed forests 1991–2013 8

Hesse FR-Hes France 48.67428N 7.06568E Deciduous broadleaf 1996–2013 6

Howard AU-How Australia 12.49438S 131.1528E Savannas 2001–13 4

Howlandm US-Ho1 Maine, United States 45.20418N 68.74028W Mixed forests 1995–2013 9

Hyytiala FI-Hyy Finland 61.84748N 24.29488E Evergreen needleleaf 1996–2013 4

Kruger ZA-Kru South Africa 25.01978S 31.49698E Savannas 2000–10 2

Loobos NL-Loo Netherlands 52.16798N 5.7448E Evergreen needleleaf 1996–2013 10

Merbleue CA-Mer Ontario, Canada 45.40948N 75.51878W Permanent wetlands 1998–2013 7

Mopane BW-Ma1 Botswana 19.91658S 23.56038E Savannas 1999–2001 3

Palang ID-Pag Indonesia 2.3458S 114.0368E Evergreen broadleaf 2002–13 2

Sylvania US-Syv Michigan, United States 46.2428N 89.34778W Mixed forests 2001–09 4

Tumbarumba AU-Tum Australia 35.65578S 148.1528E Evergreen broadleaf 2000–13 4

UniMich US-UMB Michigan, United States 45.55988N 84.71388W Deciduous broadleaf 1998–2013 5

TABLE 2. Models used in PLUMBER.

Model Developer/custodian Name

Version in

PLUMBER

CABLE Commonwealth Scientific and Industrial Research

Organisation (CSIRO)

Community Atmosphere Biosphere

Land Exchange model

2.0 and 2.0_SLI

CHTESSEL European Centre for Medium-Range Weather

Forecasts

Carbon Hydrology Tiled ECMWF

Scheme of Surface Exchanges

over Land

1.1

COLASSiB Center for Ocean–Land–Atmosphere Studies

(COLA)

COLA–Simplified Simple Biosphere

(COLA-SSiB)

2.0

ISBA-SURFEX Centre National de Recherches Météorologiques–
Groupe d’Etude de l’Atmosphère
Météorologique (CNRM-GAME)

Interactions between Soil, Biosphere,

and Atmosphere–Surface Externalisée
(ISBA-SURFEX)

3l-7.3 and dif-7.3

JULES Met Office and Natural Environment Research

Council

Joint UK Land Environment Simulator

(JULES)

3.1 and 3.1_altP

Mosaic NASA Mosaic 1

Noah Noah Community Noah land surface model 2.7.1, 3.3, and 3.2

ORCHIDEE L’Institut Pierre-Simon Laplace (IPSL) Organizing Carbon and Hydrology in

Dynamic Ecosystems (ORCHIDEE)

r1401
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variables, averaged across all four metrics and 20 flux

tower sites. Ranks are performed separately for each

LSM against the two physically based approaches and

the three empirical models, so that the average rank of

any of the benchmark models can be different in each

LSM. Ranks were used as a way of aggregating per-

formance outcomes across the four metrics and

20 sites.

The key result from PLUMBER, reported by Best

et al. (2015), is that LSMs do not perform well in

comparison with even simple empirical models for

these four common metrics. For sensible heatQh, even

the simple one-dimensional linear regression against

downward shortwave radiation outperforms all of the

LSMs (Fig. 2). The slightly more complex 3km27 em-

pirical model outperforms all models for all variables

(including net ecosystem exchange of CO2, not shown

here). These results are disturbing, but it is not at all

clear from the original experiment what is causing

these performance problems, or even if they are par-

ticularly meaningful. There are three categories of

possible causes of the apparent poor performance by

the LSMs:

d the apparent poor performance is due to problems

with the PLUMBER methodology;
d the apparent poor performance is due to spurious

good performance of the empirical models (e.g.,

systematic observational error, or empirical models

lack of energy conservation constraint); or
d the poor performance is real and is due to poor

representations of physical processes, process order,

or ability to prescribe appropriate parameter values

in LSMs.

Best et al. (2015) did not systematically examine the

PLUMBER results in the context of these three cate-

gories. Our goal is to either identify the cause of the

apparently poor behavior of the LSMs, or—equally

usefully—discount possible causes of the problems.

Here, we design and execute a number of experiments

that target these three categories. As this is a series of

discrete experiments, we describe the methods and

TABLE 3. Standard statistical set of metrics used in PLUMBER. All metrics are based on half-hourly values. In formulas, M represents

model data, O represents observed flux tower data, and n is the number of time steps.

Metric Abbreviation Formula

Mean bias error MBE

�
n

i51

(Mi 2Oi)

n

Normalized mean error NME
�jMi 2Oij
�jO2Oij

Std dev diff sd j12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Mi 2M2

n2 1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Oi 2O2

n2 1

r j

Correlation coef r

�
n

i51

(Mi 2M)(Oi 2O)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(Mi 2M)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(Oi 2O)2

s

FIG. 2. Ranks of LSMs relative to benchmarks, averaged over all metrics and sites [after Fig. 4 in Best et al. (2015)]. Each column shows

a different LSM. Within each column, sensible heat (i.e., Qh) and latent heat (i.e., Qle) are shown. The LSM is in black, and various

benchmarks are shown in comparison. The vertical axis shows the average performance rank for each model under four metrics over the

20 FLUXNET site datasets. In each case, a lower value indicates better relative performance. The 3km27 model clearly outperforms the

LSMs for both variables, and the two linear regressions consistently outperform all LSMs for sensible heat.
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results together, for each experiment divided into the

three categories described above.

2. Methodology and results

a. First possible cause: PLUMBER methodology

There are a number of aspects of the PLUMBER

methodology that warrant closer examination. Here we

investigate some potentially problematic aspects: the

use of ranks instead of metric values, aggregation over

sites and metrics, the possibility that PLUMBER was

conducted on the wrong time scale, and the simulation

initialization procedure.

1) ARE RANKS REPRESENTATIVE?

We first confirm that the PLUMBER ranks are a rea-

sonable representation of the underlying relative real

performance values for each metric and variable.

PLUMBER used ranks in place of metric values because

metric values are not comparable or easily normalizable

because of their complex distributions. However, ranks

do not necessarily capture all the nuances of the un-

derlying data, and they may misrepresent the perfor-

mance of the LSMs relative to the benchmarks. For

example, if empirical models only outperformed LSMs

by very small margins, and when LSMs outperformed

empirical models the margins were much larger, the av-

erage rank diagnostic could be very misleading.

To assess whether this is a problem in the PLUMBER

results, we calculated the differences in metric values

between each model (benchmark or LSM) and the

next-best and next-worst model. This measure allows

us to make statements about the relative performance

of the various models, independent of the distribution

of the metrics. If, for example, a model appears equally

often at each rank, one might expect the distribution of

metric margins associated with that model (i.e., ‘‘dis-

tance’’ to the next best or worst model) to be similar to

the overall distribution of metric margins across all

models. This would not be true, however, if the model

was consistently only just beating other models, rela-

tive to other pairs of models in general. In that case one

would expect the distribution of next-worst margins to

have a lower mean than overall next-worst distribution,

and the distribution of the next-best margin to have a

higher mean.

Figure 3 shows the distributions of the differences

between each model (benchmark or LSM) and the next-

best and next-worst model. The red and green data

highlight the comparisons between the LSMs and the

next worst and next best of the five benchmarks, re-

spectively. In general, the red and green have similar

distributions, and those distributions are fairly similar to

the differences between benchmark pairs (blue histo-

gram), indicating that the ranks are representing the

relative performances reasonably well. In cases where

the LSM is the worst performing model, there is no red

data, and vice versa.

The skew to the right that is clearly visible in most of

the plots is to be expected. These metrics all have values

that converge on 0 (or 1 in the case of correlation, which

is inverted), and becomemore dense as they approach 0.

Therefore, larger differences are to be expected for

worse performing pairs of models. Since LSMs tend to

perform worse than the benchmarks on average, this

FIG. 3. Histograms of differences between metric values for benchmarks and models with neighboring ranks, for all models at all sites.

Values are calculated by taking the difference of the metric value for each model (LSM or one of the five benchmarks) from the model

ranked next worst for each LSM, FLUXNET site, metric, and variable. The blue data show the benchmark-to-benchmark metric dif-

ferences. The red data show the differences between the LSM and the next-worst-ranked benchmark (e.g., if the model is ranked 4, the

comparison with the fifth-ranked benchmark). The green data show the difference between the LSM and the next-best-ranked bench-

mark. Since the models are ordered, all differences are positive (correlation is inverted before differences are calculated).
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skew is more pronounced. This suggests that it is un-

likely that ranks are unrepresentative of the underlying

relative performance differences.

2) IS AGGREGATION OVER SITES AND METRICS

PROBLEMATIC?

The results presented in PLUMBER are ranks aver-

aged acrossmultiplemetrics and acrossmultiple sites for

each variable. It is possible that the averaging process is

hiding more distinct patterns of performance—perhaps

at particular sites or under particular metrics. To assess

whether a particular site or metric was unduly influ-

encing the original PLUMBER results, we reproduce

the main PLUMBER plot separately by metric (Fig. 4)

and by site (Fig. 5).

In both of these plots and in later plots, the original

ranks for each LSM from Fig. 2 are shown in gray. Note,

however, that the ranks shown in gray are not neces-

sarily ordered with respect to the benchmarks in the

sameway that they are in Fig. 2 and are only comparable

to the black line. For example, in Fig. 2, most LSMs rank

better than 2lin for latent heatQle, but in Fig. 4, the gray

line might suggest that some these LSMs performed

worse than 2lin, but this is only because the relative rank

of 2lin has changed.

Figure 4 shows that while there is some variation be-

tween metrics, it is not the case that the LSMs are per-

forming much better or worse than empirical models for

any particular metric. Performance relative to the

benchmarks is generally mediocre across the board. The

FIG. 5. As in Fig. 2, but for results where each cell represents the average rank of all LSMs at each individual FLUXNET site. The gray line

is identical to that shown in Fig. 4.

FIG. 4. As in Fig. 2, but for results where each row represents an individual metric (see Table 3 for metric definitions). The gray line

shows the original LSMmean rank for comparison (as in Fig. 2, though note that these data are only comparable with the black line, and

not the benchmarks that have also changed).
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LSMs do perform better for standard deviation in Qle,

outperforming even the 3km27 model in most cases.

Best et al. (2015) demonstrated that the LSMs per-

formed better than the empirical benchmarks for the

extremes of the distribution of each variable, and our

analysis helps confirm that finding. As noted in Best

et al. (2015), the empirical models should be expected to

produce lower variability since they are regression

based. The normalized mean error and correlation

metrics were significantly worse than the original ag-

gregate results in Fig. 2. Gupta et al. (2009) showed that

RMSE and correlation contain substantially similar in-

formation; however, in this study the correlation metric

was the least correlated of the four metrics (20.33 with

mean bias, 20.43 with normalized mean error,

and 20.20 with standard deviation difference). On the

other hand, correlations between the other threemetrics

were quite high (0.77 mean bias with normalized mean

error, 0.75mean bias with standard deviation difference,

and 0.83 normalized mean error with standard deviation

bias). The fact that the LSMs appear to be performing

best under two of these three highly correlated metrics

(mean bias and standard deviation difference), at least

relative to the 3km27 benchmark, may indicate that the

PLUMBER results overestimate LSM performance.

Figure 5 shows that there is considerable diversity of

performance between sites for the LSMs. In this case,

results are averaged over all 13 LSMs and the four

metrics in Table 3. For example, the LSMs perform

relatively very well forQh at the ElSaler site. This site is

unusual: it is situated on a low-lying narrow spit of land

between a small lake and the Mediterranean Sea and is

likely heavily influenced by horizontal advection. It is

possible that rather than the LSMs performing well

here, it is actually the empirical models that are per-

forming poorly because they were calibrated on all other

sites that do not exhibit behaviors seen at ElSaler. This

possibility is supported by the fact that the models that

include some measure of humidity (3km27 and

Penman–Monteith) perform worse than the simpler

linear regressions. ElSaler2 is another unusual case, an

irrigated cropland site in Mediterranean Spain. The

LSMs and Manabe bucket model, which do not have

information about the additional water input to the

system, do very poorly. The unconstrained reservoir in

the Penman–Monteith equation in this case works very

well. There are a number of sites where LSMs consis-

tently perform poorly—Espirra provides an example

pattern that we might expect from the original

PLUMBER results—with LSMs performing worse than

empirical models, but much better than early theoretical

models. However, there are other sites where LSMs are

performing poorly even against the older approaches,

especially for Qh, such as Amplero and Sylvania, and

there are no sites where LSMs perform consistently well

relative to the benchmarks for both fluxes.While each of

these breakdowns—by metric and by site—give us some

insight into how LSMs are behaving, they do not explain

the cause of the general pattern of apparent poor

performance.

3) DO LSMS PERFORM BETTER ON LONGER TIME

SCALES?

Another possibility is that poor performance in the

short-time-scale, half-hourly responses of LSMs are

dominating the performance metrics. While versions of

these models are designed for both climate and weather

prediction, here we are largely concerned with long-

term changes in climate and the land surface. In this

context, short-time-scale responses may be relatively

inconsequential, as long as the longer-term result is ad-

equate. It is plausible, for example, that short time lags

in various state variables built into LSMs might be ad-

versely affecting the half-hourly model performance,

while improving the longer-time-scale skill of themodel.

All of the original PLUMBER metrics are calculated

on a per time step basis, and so do not take this possi-

bility into account. To examine this, we recalculate the

PLUMBER ranks after first averaging the half-hourly

data to daily, monthly, and seasonal time steps.

Figure 6 reproduces the PLUMBER plots after av-

eraging data to three different time scales: daily aver-

ages, monthly averages, and seasonal averages. While

there are some changes in these plots, there is no major

improvement of LSM behavior relative to the empirical

benchmarks. On all time scales, the LSMs are consis-

tently outperformed by the empirical benchmarks, sug-

gesting that the problems found in PLUMBER are not

related to time scale.

4) ARE INITIAL CONDITIONS A PROBLEM?

It is possible that the initialization procedure used in

PLUMBER is inadequate. If the spinup period was not

long enough for state equilibration, or it was not rep-

resentative of the period immediately preceding the

simulation, then we would expect to see a stronger bias

in the early parts of the first year of the data for each run.

PLUMBER used a spinup procedure that involved re-

peatedly simulating the first year at each site 10 times

before running over the whole period and reporting

model output. To test whether poor spinup might be the

cause of the poor performance seen in PLUMBER, we

calculated a number of new metrics over each simula-

tion, for each variable, based on daily average data.

First, we calculate the day at which each of these simu-

lation time series first crosses the equivalent observed

JUNE 2016 HAUGHTON ET AL . 1711



time series, both as an absolute value and as a percent-

age of the length of the dataset, which gives some in-

dication of whether the simulation has converged on the

observed data. Next, we calculate the difference in slope

parameters of a linear regression over the two time se-

ries, and also the significance of this difference (where

the null hypothesis is no difference). Last, we check if

the bias is decreasing—that is, if the simulations have

positive mean errors, is the trend slope negative (e.g.,

mean error is closer to zero in the second half of the time

series) or vice versa?

Figure 7 shows the results of the approaches described

above. For each of the two fluxes (rows), using daily

average data, it shows the first day in the time series that

the simulated flux is equal to, or crosses, the observed

flux (first column, logarithmic scale) and the results ex-

pressed as a percentage of the time series (second

column); the difference in the slopes of linear re-

gressions of simulated and observed series over time

(third column; Wday21); significance of the difference

in the previous metric (fourth column; values left of the

red line are significant at the a5 0.05 level;;44% of all

values); and the rate at which the bias is decreasing,

measured by means of model error divided by the gra-

dient of model error (fifth column; negative values in-

dicate the simulations have a trend toward the

observations). Each panel is a histogram, with each en-

try colored by the FLUXNET site it represents.

The first two metrics show that in nearly all cases, the

simulations’ time series quickly cross the observed time

series (76% of simulations cross in the first 1% of the

period, and 97% cross in the first 10%), indicating that it

is unlikely that lack of equilibration explains the poor

behavior of the LSMs relative to the benchmarks. The

FIG. 6. As in Fig. 2, but for values that are averaged over daily, monthly, and seasonal time periods. The gray line is identical to that shown

in Fig. 4.

FIG. 7. Histograms of model spinup metrics, based on daily averages, from all LSMs at all sites. From left to right: day at which the

simulated series crosses the observed series; day at which the simulated series crosses the observed series, but as a percentage of the time

series; difference in the slopes of linear regressions of simulated and observed series over time (Wday21); significance of the difference in

the previous metric (values left of the red line are significant at the a 5 0.05 level; ;44% of all values); and the rate at which the bias is

decreasing,measured bymean(error)/slope(error) (negative values indicate the simulations have a trend toward the observations). Colors

indicate the FLUXNET site at which the simulation is run.
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third and fourth metrics show the differences between

the trends in the observations and the simulations and

the significance of those differences. In the majority of

cases, effect sizes are quite small, with 61% of absolute

trend differences less than 0.02Wday21 or 7.3Wyr21

(third column, Fig. 7), which is well within the standard

error of the time series. Forty-five percent of these trend

differences are significant at the a 5 0.05 level (fourth

column, Fig. 7), but there is no indication of a pattern

of trends toward a lower bias; 54% of simulations

have a trend that increases rather than decreases the

bias (column 5). The colors in the plot specify the

FLUXNET sites, and as indicated, aside from the two

first-crossing metrics, there is very low correlation

between metrics (r � 0.05, see Table 4).

We have therefore not been able to find obviousmajor

systematic flaws in the PLUMBER methodology. The

poor performance of the LSMs in PLUMBER, relative

to the empirical benchmarks, cannot be dismissed based

on any obvious flaw in the methodology.

b. Second possible cause: Spurious empirical model
performance

We next examine the possibility of spurious good

performance by the empirical models. While there are a

number of possibilities related to data quality, we focus

on one main possibility that has been brought up mul-

tiple times by the community in response to the original

PLUMBER paper.

LACK OF ENERGY CONSERVATION CONSTRAINTS

The obvious candidate is that the empirical models are

able to perform so well relative to the LSMs because they

do not have any kind of built-in constraint for energy

conservation. This allows them to potentially produce

results that predict individual flux variables quite well,

but are physically inconsistent (e.g., outgoing flux energy

is not constrained by net radiation). One way to test this

hypothesis is to build empirical models that have addi-

tional constraints that ensure that energy is conserved.

Because of the effects of energy storage pools (mainly

in the soil), it is not a trivial matter to produce a

conservation-constrained empirical model. We therefore

approach the problem from the opposite direction: we

assume that energy conservation in the LSMs is correct

and use the calculated available energy (Qh 1 Qle) from

each LSM to constrain the empirical model output:

Q0
emp 5

Q
emp

(Q
hemp

1Q
leemp

)
(Q

hLSM
1Q

leLSM
) ,

where Qemp can be eitherQhemp
orQleemp

. An alternative

approach might be to correct the observations with the

LSMs’ total energy and to retrain the empirical models

on the corrected data. We have no a priori reason to

expect that this approach would provide qualitatively

different results, and it would require significantly more

computation.

Our approach effectively forces each empirical model

to have the same radiation scheme and ground heat flux

as the LSM it is being compared to (since available en-

ergy Qle 1 Qh is now identical) and preserves only the

Bowen ratio from the original empirical model pre-

diction. While this makes the empirical models much

more like the LSMs, it informs us whether the empirical

models were simply reproducing a systematic lack of

energy conservation in the flux tower data. That is, if

these modified empirical models perform similarly to

their original counterparts, then energy conservation,

while no doubt a real data issue, is not the cause of this

result. If the reverse is true—that the modified empirical

models no longer outperform the LSMs—there are at

least two possibilities. Most obviously, the empirical

models may indeed be fitting to systematically biased

observational data. Alternatively, poor available energy

calculations on the part of LSMs might cause the deg-

radation of the modified empirical models, so that en-

ergy conservation is less of an issue. There are some

difficulties with the transformation shown in the equa-

tion above. When the denominator in this equation ap-

proaches zero the conversion could become numerically

unstable. Under these conditions, we replace all values

of Qh and Qle with the values from the LSM whenever

jQhemp
1Qleemp

j , 5Wm22. This effectively means that

only daytime values are modified.

If the energy-conserving empirical models still out-

perform LSMs, it would indicate that calculation of

available energy in LSMs is relatively sound and that the

TABLE 4. Correlation between model metrics in Fig. 7.

First crossing First cross percent Slope diff Slope diff significance

Bias decreasing 20.017 20.019 20.025 20.006

First crossing 0.990 0.029 0.0386

First cross percent 0.015 0.031

Slope diff 0.034
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energy partitioning approach is the likely cause of the

poor performance. That is, even when empirical models

are forced to have the same available energy as eachLSM,

performance ranks are essentially unchanged. Alterna-

tively, if the energy-conserving empirical models perform

poorly, it may either indicate that empirical models are

trained tomatch systematically biased, nonconserving flux

tower data or that the calculation of available energy in

LSMs is the main cause of their poor performance.

The results of the energy-conserving empirical model

experiment are shown in Fig. 8. We wish to reinforce

that Fig. 8 shows precisely the same LSM, Manabe

bucket, and Penman–Monteith simulations as Fig. 2, and

only the empirical benchmarks have changed (which in

turn affects the other models’ ranks).

It is clear that this change to the empirical models of-

fers some LSMs a relative improvement in their rank.

Noah2.7.1 and ORCHIDEE now beat all empirical

models for Qle, for example. This is far from a uniform

result, however. Note also that Qle performance from

CABLE2.0_SLI, ISBA-SURFEX3l, and Noah3.2 is now

worse than 2lin, which was not the case in Fig. 2. The

energy constraint has actually improved the empirical

model performance in these cases. It is also still the case

that all LSMs are outperformed by the energy-conserving

versions of 1lin for Qh. It therefore appears unlikely that

the energy conservation issues in flux tower data are the

cause of the empirical models’ good performance.

While some of the changes seen in Fig. 8 can be at-

tributed to the forcing of energy conservation on em-

pirical models, there are other possible interpretations.

They could be reflecting the effect that each LSM’s

available energy calculation had on the empirical

models. For example, if a particular LSM had a very

poor estimate of instantaneous available energy (i.e.,

Qle 1 Qh) because of issues in its radiation or soil heat

transfer schemes, forcing this estimate on all of the

empirical models might degrade their performance in a

nonphysical way. This would of course appear in Fig. 8

as a relative improvement in the LSM’s performance. It

is not clear whether this, or accounting for a lack of

energy conservation in empirical models, is the cause of

the improvements and degradations in performance we

see in Fig. 8.

One unavoidable problem with this methodology is

that if the flux tower data have a consistent bias in the

evaporative fraction, then the LSMs will appear to

perform relatively worse because of the empirical

models overfitting that bias. Figure 9 shows the biases in

simulated evaporative fraction at each site across all

LSMs. This plot consists of standard box plots showing

the mean, first and third quartiles, and outliers. The

biases are calculated by taking

 
Q

lesim

Q
hsim

1Q
lesim

2
Q

leobs

Q
hobs

1Q
leobs

!

using daily data and excluding all cases where

jQh 1Qlej , 1Wm22 for either simulations or observa-

tions, to avoid numerical instability. It is clear that at

some sites the LSMs have an apparent bias in evaporative

fraction. It is not possible to be certain whether this bias is

in the flux tower data or because of shared problems

between the LSMs. We address this in the discussion.

This analysis indicates that, while problems with the

flux tower data may contribute in a small way, they do

not explain the entirety of the poor performance seen in

PLUMBER. In general, the LSMs are not only pre-

dicting total heat poorly, they are also predicting the

partitioning of that heat poorly.

c. Third possible cause: Poor model performance

Finally, we search for indications that the problem

might lie with the LSM simulations themselves. We

examine two possibilities: LSM performance over short

time scales and performance at different times of the

day. We also explore how the LSMs perform as an en-

semble, in an attempt to assess whether problems might

be shared across models.

1) HOW DO LSMS PERFORM OVER SHORT TIME

SCALES?

When investigating the PLUMBER methodology, as

outlined above, we examine whether short-time-scale

FIG. 8. As in Fig. 2, but for energy conservation constrained empirical models. The gray line is identical to that shown in Fig. 4.
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variability is dominating the PLUMBER metrics by av-

eraging data to different time scales before recalculating

performance measures. The inverse of this possibility is

that rather than getting the short-time-scale aspects of

climate wrong, the LSMs are actually simulating the high-

frequency responses well, but failing over the long term.

This would occur, for example, if the magnitude of the

soil moisture reservoir were the wrong size, or the input

or output to this reservoir caused it to dry too quickly or

too slowly. To test this possibility, we remove all of the

low-frequency variability from the error time series, by

first bias correcting the simulation on a daily basis for

each variable (Q0
sim 5Qsim 2Qsim 1Qobs, for each day)

and then removing the average daily cycle over the re-

maining residuals. This gives us a model time series that

has the same mean daily temperature and average daily

cycle as the observations, but retains all of the modeled

high-frequency variability.

The high-frequency-only results are shown for each

metric in Fig. 10. Because of the nature of the bias cor-

rection, the bias metric (second row in Fig. 4) is always

0 for the LSMs, resulting in a trivial rank of 1, and so we

remove the biasmetric from these results. The effect this

has can be seen by comparing Fig. 10 to the first, third,

and fourth rows in Fig. 4. In all three metrics there are

notable improvements in LSM ranks (averaged over

all sites), suggesting that a significant portion of LSM

error is likely due to the modulation of instantaneous

model responses by the model states (e.g., soil moisture

and temperature). The degree of improvement does

vary between models to some degree—CABLE2.0_SLI,

COLASSiB, and Noah3.3 improved in absolute rank in

all metrics as a result.

2) DO LSMS PERFORM BETTER AT DIFFERENT

TIMES OF THE DAY?

The LSMs appear to be having problems extracting all

of the available information from the available meteo-

rological forcings, especially downward shortwave ra-

diation (SWdown), as evidenced by the 1lin model

outperforming each LSM for Qh. It thus seems likely

that the LSM performance might vary according to the

availability of that information. To test this possibility,

we split the analysis over time of day, splitting each time

series into night (2100–0300 LT), dawn (0300–0900 LT),

day (0900–1500 LT), and dusk (1500–2100 LT) and re-

peating the analysis for each subseries.

The time-of-day analysis is presented in Fig. 11. As

might be expected, there is clear variation in LSM

performance relative to the benchmarks at different

times of the day. The LSMs generally outperform the

1lin and 2lin models at nighttime. This is to be ex-

pected, as these two benchmarks, 1lin especially, have

essentially no information at this time of day. In gen-

eral, the LSMs all appear to be having difficulty with

both fluxes around sunrise. It is worrying that some of

the LSMs appear to be doing worse than a linear re-

gression on sunlight during the nighttime for latent heat

(COLASSiB, ISBA-SURFEX3l, and ORCHIDEE).

However, the performance differences are small in

those cases and may be simply an artifact of the data

(e.g., the empirical models fitting noise in FLUXNET).

FIG. 9. Biases in daily evaporative fraction for each LSM simulation, grouped by site.
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Overall, it does not appear to be the case that the LSMs

are performing well at any particular times of the day.

3) HOW DO THE LSMS PERFORM AS AN

ENSEMBLE?

Last, we investigate whether the nature of the poor

performance is a problem that is shared among models

by examining the performance of the LSMs as an en-

semble. Model ensemble analysis has a long history in

the climate sciences (e.g., the Coupled Model In-

tercomparison Project; Meehl et al. 2007; Taylor et al.

2012), as well as in the land surface modeling commu-

nity (Dirmeyer et al. 2006). Ensemble analysis allows

us to identify similarities in performance between the

LSMs. If each LSM is performing poorly for very dif-

ferent reasons, we might expect that at a given site, the

time series of model error (model observed) between

different models would be uncorrelated. If this were

the case, the multimodel mean should provide a sig-

nificantly better estimate of the observed time series,

since the eccentricities causing each model’s poor

performance will tend to cancel each other. By anal-

ogy, the standard deviation of the mean of n random

number time series, each with standard deviation 1 and

mean 0, is 1/
ffiffiffi
n

p
. As an attempt to try to ascertain the

degree of shared bias among LSMs, we choose to

FIG. 10. As in Fig. 2, but for high-frequency response only, by metric; LSMs are bias corrected on a daily basis and then have the daily

cycle in the errors removed. The gray line is identical to that shown in Fig. 4. The mean bias error metric is not included because it is

trivially zero because of the bias correction process.

FIG. 11. As in Fig. 2, but for results split by daily cycle. The four rows represent the 6-h periods around dawn (0300–0900 LT), noon

(0900–1500 LT), dusk (1500–2100 LT), and midnight (2100–0300 LT). The gray line is identical to that shown in Fig. 4.
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examine three different ensemble means: the un-

weighted average; the error-variance-based, perfor-

mance-weighted mean; and the error-covariance

independence-weighted mean (Bishop and Abramowitz

2013; Haughton et al. 2015). A priori, we should expect

these ensemblemeans to perform differently in different

circumstances. First, as mentioned above, if errors from

different models have pairwise low correlations, we

should expect the model mean to perform better than

individual models. Next, if there are substantial differ-

ences in performance of themodels, we should expect the

performance-weighted mean to outperform the un-

weighted mean. If performance across the ensemble is

similar but errors are highly correlated in a subset of the

LSMs, thenwe should expect the independence-weighted

mean to outperform both the unweighted mean and

performance-weighted mean. The corollary is that if the

independence-weighted mean does not outperform the

unweighted mean, this likely indicates that problems

causing poor performance are shared among LSMs.

The results of the performance of the three en-

semble means are shown in Fig. 12. The means all

perform similarly, or slightly better than the best

LSMs under each metric (see Fig. 4). However, the

means are still outperformed by the empirical models

in many cases. It is notable that there is also very little

improvement under either of the weighted means. The

performance-weighted mean only gives a slight im-

provement, which confirms that the differences in

performance between LSMs relative to the bench-

marks are not significant. The independence-weighted

mean also has little improvement, which gives an in-

dication that problems with performance are shared

across LSMs.

3. Discussion

The PLUMBER results are worrisome, and it seems

sensible to approach them with some skepticism. It is

tempting to write off the results as an artifact of the

PLUMBER methodology, but this does not appear to

be the case. Over all LSMs tested, there is a consistent

problem of poor performance relative to basic empirical

models that is not obviously related to simulation ini-

tialization, particular sites or metrics biasing the analy-

sis, or the time scale of the analysis. Despite the very

wide range of performance ranks across different flux

tower sites, once the obvious, understandable cases are

removed (especially the ElSaler, ElSaler2 pair of sites,

for different reasons), the aggregated picture of per-

formance in Fig. 2 seems broadly representative of our

current LSMs.

In our energy-conserving empirical model analysis, we

rescaled the total available energy in the empirical

models tomatch that in each LSM, effectivelymaking the

total available energy identical in each pair of models and

only comparing the partitioning of that energy into Qh

and Qle. We then showed that there are biases between

the LSMs and the FLUXNET data, but that across sites

there is no consistent bias that might cause the empirical

models to perform spuriously well. There are known

problems with energy conservation in flux tower data—

Rnet 5Qle 1Qh 1Qg is unbalanced by 10%–20% at

most sites (Wilson et al. 2002). However, this does not tell

us anything about any potential bias in the evaporative

fraction. Indeed, Wilson et al. (2002) note that the flux

biases are independent of the Bowen ratio. Other studies

have found that energy balance closure is dependent on

stability (Kessomkiat et al. 2013; Stoy et al. 2013). We

corrected the empirical model with the evaporative

fraction, which is very close but more stable than the

Bowen ratio suggested by Wilson et al. (2002). There

is, however, discussion in the literature that eddy flux

measurements might underestimate sensible heat

muchmore than latent heat (e.g., Ingwersen et al. 2011;

Charuchittipan et al. 2014; Mauder and Foken 2006).

This would affect the PLUMBER results for sensible

heat and might improve LSM ranks. It would not affect

the latent heat results, however, and LSMs would still

perform worse than the empirical benchmarks for the

normalized mean error and correlation metrics.

So, if there is a problem with the LSMs, as appears to

be the case, where does it leave us? There are two broad

possibilities to investigate.

The first, and perhaps most confronting, is that there

are flaws in the structuring, conception of the physics, or

ordering of processes in themodels. The results from the

three approaches to LSM averaging suggest that such a

problemmight be largely shared among LSMs. LSMs do

commonly share some similar conceptualizations of land

surface processes, even if they do not share imple-

mentation details. Masson and Knutti (2011) showed

how interrelated climate models can be. Those results

include many of the models used here, and it would be

interesting to see such an analysis performed on

LSMs alone.

Examples of such shared problemsmight be that all of

the LSMs could be missing a major component or a re-

lationship between components, or they may share a

flawed representation of one or more components. This

part of the modeling process is hard to analyze rigor-

ously; however, some analysis of assumptions contained

in models and the effects that those assumptions have on

model performance has been undertaken (e.g., Clark

et al. 2008; De Kauwe et al. 2013; Zaehle et al. 2014). In
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principle, one could take a single LSM and replace

major model components with calibrated linear re-

gressions (if the observational data were available to

create these) and compare performance, in order to

pinpoint which component is the main cause of the poor

performance. This would likely require a quantity of

process-level data that is not yet available.

While we largely present negative results in our at-

tempts to pinpoint these problems, there are some in-

dications as to where the problem may lie if model

physics is the cause of this result. The energy-conserving

empirical models give a strong indication that the cal-

culation of available energy for Qle and Qh is not the

main problem. That is, since the conserving empirical

models effectively have the same Rnet and ground heat

flux as the LSMs and still broadly outperform the LSMs,

we assume that the main issue is in the calculation of

these fluxes. While there are snow periods in some of

these datasets, the majority does not include any sig-

nificant snow—we can probably safely ignore snow

submodels as a cause of the overall result. It does appear

that there are some issues in the available energy cal-

culations that vary across models. Some models, for

example, do perform better in a relative sense once the

empirical models are forced to match their available

energy (cf. Figs. 2 and 8). Overall, however, this does not

make a qualitative difference to LSM ranks against the

empirical models. The analysis removing diurnal means

(Fig. 10) also broadly supports the idea that available

energy and partitioning is being adversely affected by

storage. That is, when the error in the diurnal average

and average diurnal cycle was removed from LSMs, ef-

fectively removing any bias from inappropriate soil

moisture levels and leaving behind only each LSM’s

FIG. 12. As in Fig. 2, but for the results for three different means across all LSMs, by metric.

The gray line is identical to that shown in Fig. 4. In general, we should expect means to perform

better under all metrics except the standard deviation metric, as the averaging process acts as

a smoother, removing noncorrelated noise from the model results.
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high-frequency responses, there was an improvement in

performance. Ideally, we would like to test directly

whether, for example, soil moisture is correlated with

the accuracy of evaporative fraction prediction. Un-

fortunately, the FLUXNET datasets we used did not all

contain soil moisture observations. In the cases that did

report soil moisture, major challenges exist in using

these data to evaluate LSMs. Observations are taken

over different depths, using different measurement

strategies, for example. There are also major issues in

what soil moisture means in an LSM (Koster et al. 2009)

and whether this variable can be compared directly with

observed soil moisture.We therefore avoid comparisons

of the LSM results with observed soil moisture but note

that if the problems of data quality, consistency of

measurements, and issues of scale can be resolved, this

would provide a particularly good way forward for re-

solving why the LSMs perform poorly.

One caveat that must be added here is that these

simulations are all run off-line, uncoupled from an at-

mosphere model. In climate simulation and numerical

weather prediction experiments, the LSM would be

coupled to an atmosphere model that provides feedback

to the land surface in a way that fixed meteorological

forcings cannot, and this feedbackmay provide damping

of errors that the LSMs produce. Wei et al. (2010) in-

dicates an effect along these lines in dry regions, by

showing that an ensemble of LSMs coupled to an at-

mosphere model can produce higher variance between

the LSMs when they are coupled individually, likely due

to the fact that the strength of the coupling feedback is

divided among the participating LSMs. Holtslag et al.

(2007) also find that coupledmodels tend to produce less

variance in stable boundary layer conditions because the

fluctuating surface temperature provides feedback to

the heat fluxes. A logical next step is therefore to

perform a PLUMBER-like benchmarking evaluation

in a coupled environment. Because of the difficulty of

coupling many LSMs with one or more atmosphere

models, as well as the problem of how to fit the bench-

marks, such an experiment would be extremely chal-

lenging to undertake.

Calibration is also an ongoing problem, particularly

because of the large number of poorly constrained pa-

rameters and internal variables, combined with the

nonlinearity of the models, which leads to problems of

equifinality. These results might also reflect the com-

pensating effect of calibration against streamflow or

gridded evapotranspiration products, where model

structural and spatial property assumptions form part of

the calibration process. Experiment-specific calibration

may have improved the performance of the LSMs in

PLUMBER. However, calibrating LSMs per site would

give them an unfair advantage over the empirical

models, which are only calibrated out of sample and

which use no site-characteristic data. The simulations in

PLUMBER were run with appropriate reference

heights and IGBP vegetation type, using the LSM’s

default calibration for that vegetation type. Soil char-

acteristics were selected by individual modeling groups.

Clearly, using broad vegetation classes risk losing a lot of

site-level specificity, but there is no way to calibrate the

LSMs for specific sites while ensuring no overfitting

(e.g., out-of-sample calibration) within the PLUMBER

dataset, since there are not multiples of each vegetation

class represented. Improved per-vegetation class cali-

bration using other FLUXNET sites may help, but at

least some of the LSMs in this study are already cali-

brated on FLUXNET or similar datasets at multiple

sites and should perform reasonably well over these 20

datasets without recalibration. While there are ad-

vanced methods of multicriteria calibration available

(e.g., Guerrero et al. 2013; Gupta et al. 1999), as well as

viable alternatives to performance-based calibration

(Schymanski et al. 2007), it would seem sensible to also

focus on model parsimony, especially in components

that are largely underconstrained. However, even if

calibration is part of the problem here, it must be re-

membered that the empirical models are acting on only

1–3 of the 7 meteorological variables available to the

LSMs, and also take no account of spatial or temporal

variables. While it is true that adding further forcing

variables would not guarantee a better result, for ex-

ample, if those variables have systematic errors, the

consistency of performance of the empirical models in-

dicates that that is not the case for at least downward

shortwave radiation, air temperature, and relative hu-

midity, and we have no a priori reason to expect it to be

the case with the other variables.

It is also worth reflecting on the fact that the core

conceptual process representations in LSMs were de-

rived before any high-density data were widely available

across different biomes. While the majority of these

LSMs are calibrated on some site-level data, there is the

possibility that our conceptually consistent LSMs are in

some way not physically consistent with observations.

An example of this possibility, that may explain the

PLUMBER result that the LSMs are almost always

worse at simulating Qh compared to Qle, relates to how

the models are designed. The formulation ofQh andQle

in LSMs commonly refers to a ‘‘within canopy temper-

ature,’’ for example, through which these fluxes are ex-

changed with the atmosphere above the canopy.

Imagine that this within canopy air temperature is er-

roneous. Under these circumstances, Qh would system-

atically be simulated poorly relative to Qle, because it is
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not limited by availablemoisture. On top of this, energy-

conservation correction formulas may be partitioning

the conservation error poorly.

We cannot test this in all models involved in

PLUMBER, but we can test this idea using one of the

PLUMBER models. We took CABLE and introduced

an error in the initial temperature of the canopy air

space ranging from25 to15K, at the start of each time

step, and we then examined the impact of this error on

Qh andQle. Figure 13 shows how the error inQh andQle

scales with the error in within canopy air temperature

and shows that the error in Qh increases much more

quickly than the error inQle. We are not suggesting here

that this is why all LSMs testing in PLUMBER show this

behavior, but we do suggest that there are key variables,

common to LSMs, that act as pivots in the performance

of an LSM and that are not resolved by feedbacks.While

canopy interception cannot introduce too large an error

(because too much evaporation in one hour will be

compensated by too little in the next hour), if a sys-

tematic error is implicit in the interpolation of a refer-

ence air temperature to a canopy air temperature, then

this may not be compensated by feedbacks and lead to

an error that is not resolved on longer time scales. We

can demonstrate this for CABLE, and we suggest it is a

plausible explanation for other LSMs. We suspect that

other similar pivot variables, not ameliorated by feed-

backs, might exist and might provide keys to unlocking

the PLUMBER results.

The second possibility is that the LSMs are concep-

tually correct but are too complex for the task at hand.

Modern LSMs have around 40 spatially varying pa-

rameters. At the scales that they normally operate—

globally or regionally—observations rarely adequately

constrain these parameters. To get around this issue

they are usually calibrated, often using flux tower data,

for each vegetation type. This process makes assump-

tions about landscape homogeneity and forces the LSM

to behave consistently with the time, place, and cir-

cumstances of the calibration data. Using complex

LSMs in this way may be forcing relatively capable

models to operate essentially as empirical models, and

using them out of sample. If we only use very simple

metrics this can appear to be an issue of equifinality in

calibration, but in reality the right answer is obtained for

the wrong reasons, and as a result poor predictive out-

comes are likely.

If true, this suggests that the appropriate level of

complexity for a global LSM is amodel with a parameter

set of approximately the same dimension as the number

of independent observable surface properties at the

global scale—perhaps an order of magnitude smaller

than modern LSMs today. While this is approximately

the amount of information we provide LSMs at this

scale, by prescribing vegetation and soil types, it is the

fixed parameters, or forced covariation of these pa-

rameters, that is potentially more important. Related

issues of poor parameter constraint were explored by

Mendoza et al. (2015). It should also be noted that re-

gression methods, which are based on maximizing vari-

ance of the variables we attempt to predict, benefit

from a simpler method of fitting and can make stronger

use of some observed variables that are not pure pre-

dictors, such as relative humidity, which is highly cor-

related with the Bowen ratio (Barros and Hwu 2002),

and therefore may have a substantial advantage. How-

ever, this only explains the performance of the 3km27

benchmark and not the fact that the simpler regressions

still outperform the LSMs for Qh.

It is also possible that the problems identified by

PLUMBER do not have a single cause and are simply an

agglomeration of small, individually insignificant errors,

including some of those possibilities identified here.While

our results do not explicitly resolve the performance

problems shown in the original PLUMBER results, they

do help us to rule out a number of possible causes, and in

doing so, suggest directions for further investigation.

4. Conclusions

We investigated three broad categories of possible

causes for the key result in the original PLUMBER

experiment—LSMs being outperformed by simple, out-

of-sample empirical models. These were the experi-

mental methodology of PLUMBER; spurious good

performance of the empirical models in PLUMBER

resulting from systematic bias in flux tower data; and

genuine poor performance of LSMs. While not every

aspect of PLUMBERmethodology was investigated, we

did establish that particular sites or metrics were not

biasing the result. Analyzing data on different time

scales similarly had little effect, and there did not appear

to be any systematic drift toward observed values that

might be indicative of a systematic failure in the model

spinup protocol. We also repeated the experiment with

energy-conserving versions of the original empirical

models used in PLUMBER, constrained by the avail-

able energy calculations of each LSM, to try to ascertain

whether a lack of energy conservation on the part of

empirical models was the likely cause. Again, this had

little effect on the result.

This leaves only the last of these three causes, the

LSMs themselves. The empirical models suggest that

there is more information in the input data available to

reproduce observed latent and sensible heat than the

LSMs are using. The calculations of the heat fluxes and
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the model states upon which these depend are therefore

the most likely candidates for the cause of the large

discrepancies observed here. It remains a topic for fur-

ther investigation whether this is ultimately the result of,

for example, overparameterization, missing process,

problems with calibration, or one of several other pos-

sible reasons. Not all models are developed with the

same purpose, and some LSM development may have

focused on very different aspects of the model, such as

the distribution of natural vegetation, which might lead

to models that are conceptually consistent but obser-

vationally inconsistent when predicting heat fluxes. We

cannot recommend specific LSM improvements, but

rather provide a framework for model developers

against which they can check their developments.

The validity of the benchmarking methodology in

Best et al. (2015) was further evaluated in this study. It is

worth noting that while PLUMBER may have un-

discovered flaws, it is still extremely valuable: the rela-

tive poor performance of LSMs would likely have

remained hidden under any previous model evaluation

or intercomparison methodology.
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